Contribution of myosin II activity to cell spreading dynamics.
نویسندگان
چکیده
Myosin II activity and actin polymerization at the leading edge of the cell are known to be essential sources of cellular stress. However, a quantitative account of their separate contributions is still lacking; so is the influence of the coupling between the two phenomena on cell spreading dynamics. We present a simple analytic elastic theory of cell spreading dynamics that quantitatively demonstrates how actin polymerization and myosin activity cooperate in the generation of cellular stress during spreading. Consistent with experiments, myosin activity is assumed to polarize in response to the stresses generated during spreading. The characteristic response time and the overall spreading time are predicted to determine different evolution profiles of cell spreading dynamics. These include, a (regular) monotonic increase of cell projected area with time, a non-monotonic (overshooting) profile with a maximum, and damped oscillatory modes. In addition, two populations of myosin II motors are distinguished based on their location in the lamella; those located above the major adhesion zone at the cell periphery are shown to facilitate spreading whereas those in deeper regions of the lamella are shown to oppose spreading. We demonstrate that the attenuation of myosin activity in the two regions may result in reciprocal effects on spreading. These findings provide important new insight into the function of myosin II motors in the course of spreading.
منابع مشابه
Interaction of Crk with Myosin-1c Participates in Fibronectin-Induced Cell Spreading
We previously reported a novel interaction between v-Crk and myosin-1c, and demonstrated that this interaction is essential for cell migration, even in the absence of p130CAS. We here demonstrate a role for Crk-myosin-1c interaction in cell adhesion and spreading. Crk-knockout (Crk ⁻/⁻) mouse embryo fibroblasts (MEFs) exhibited significantly decreased cell spreading and reduced Rac1 activity. A...
متن کاملInhibition of myosin light chain kinase by p21-activated kinase.
p21-activated kinases (PAKs) are implicated in the cytoskeletal changes induced by the Rho family of guanosine triphosphatases. Cytoskeletal dynamics are primarily modulated by interactions of actin and myosin II that are regulated by myosin light chain kinase (MLCK)-mediated phosphorylation of the regulatory myosin light chain (MLC). p21-activated kinase 1 (PAK1) phosphorylates MLCK, resulting...
متن کاملMyosin is involved in postmitotic cell spreading
We have investigated a role for myosin in postmitotic Potoroo tridactylis kidney (PtK2) cell spreading by inhibitor studies, time-lapse video microscopy, and immunofluorescence. We have also determined the spatial organization and polarity of actin filaments in postmitotic spreading cells. We show that butanedione monoxime (BDM), a known inhibitor of muscle myosin II, inhibits nonmuscle myosin ...
متن کاملAssembly of non-contractile dorsal stress fibers requires α-actinin-1 and Rac1 in migrating and spreading cells.
Cell migration and spreading is driven by actin polymerization and actin stress fibers. Actin stress fibers are considered to contain α-actinin crosslinkers and nonmuscle myosin II motors. Although several actin stress fiber subtypes have been identified in migrating and spreading cells, the degree of molecular diversity of their composition and the signaling pathways regulating fiber subtypes ...
متن کاملMechanics of cell spreading: role of myosin II.
As it migrates over a substratum, a cell must exert different kinds of forces that act at various cellular locations and at specific times. These forces must therefore be coordinately regulated. The Rho-family GTPases Rac1 and Cdc42 promote actin polymerization that drives extension of the leading cell edge. Subsequently, RhoA regulates myosin-dependent contractile force, which is required for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Soft matter
دوره 12 2 شماره
صفحات -
تاریخ انتشار 2016